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Abstract

We perform direct numerical simulation (DNS) of a turbulent bubble-laden channel flow of shear Reynolds number Res = 131 to
analyse mass transfer in a parallel plate electrochemical reactor. We set aside the electrochemical part of the problem and focus on
the simulation of a turbulent channel flow of a liquid electrolyte with gas bubbles evolving from an electrode located at the bottom wall
of the channel. We use an Eulerian–Lagrangian representation to simulate dispersed two-phase flow, where two-way momentum cou-
pling between the bubbles and the electrolyte is taken into account. Three-dimensional simulations are obtained using a distributed mem-
ory parallel computer architecture. Investigations on the bubble motion due to advection and gravitational rise are carried out and the
interaction of bubbles with turbulent flow structures is analysed. Furthermore, the role of the lift force acting on the bubbles is inves-
tigated. Mean volume fraction statistics are shown for validation purposes. An analysis of instantaneous flow fields and bubble distri-
butions as well as order-of-magnitude analyses are used to determine which forces are mostly influencing the bubble dynamics and
dispersion.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Turbulent bubble-laden flows occur in a wide variety of
industrially relevant processes. One example of such a pro-
cess is electrochemical graining. In this technique, a peak
and valley structure is etched into the surface of a metallic
electrode by means of chemical reactions between the sur-
face material and an acidic electrolyte.

We perform DNS of turbulent bubble-laden flow to
analyse the mass transfer in a parallel plate reactor, which
is a simplified electrochemical experimental device approx-
imating existing industrial set-ups for electrochemical
graining. A simple sketch of such a device is shown in
Fig. 1. Basically, the parallel plate reactor features turbu-
lent flow of an electrolyte in a channel with a cathode at
the bottom and an anode at the top. An externally applied
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potential difference causes ion migration in the electrolyte
and electrochemical reactions at the electrodes. Due to
those reactions, gas bubbles can be formed at nucleation
sites on the electrode surfaces. Those bubbles grow and
detach from the electrode into the flow, where they are car-
ried away by the electrolyte and experience a rise due to
buoyancy.

Typical sizes of bubbles formed in electrochemical reac-
tions are in the micrometer regime. Due to their small
diameters, they are of low Weber number, meaning that
they are spherical and their dynamics can be assumed to
be independent of their surface tension. Therefore, we gen-
erally assume the bubbles in our frame of interest to be of
spherical shape and non-deformable. Also, small spherical
bubbles have a very low tendency of breaking up due to
their high surface tension. Therefore, we neglect bubble
break-up in the present work.

From the theory of turbulent flows, it is known that the
energy transfer in the flow covers the range between the
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Nomenclature

CD [–] drag coefficient
CL [–] lift coefficient
Reb [–] bubble Reynolds number
Res [–] shear Reynolds number
V [m3] cell volume
Vb [m3] bubble volume
We [–] Weber number
d [m] bubble diameter
f [N/m3] volume specific force
g [m/s2] gravitational acceleration
h [m] channel half-height
L [m] length scale
p [N/m2] pressure
ubulk [m/s] bulk velocity of the flow
ur [m/s] rise velocity
urel [m/s] relative velocity between the phases

us [m/s] shear velocity
u [m/s] fluid velocity
v [m/s] bubble velocity
x [m] bubble position
ad [–] dispersed phase volume fraction
c [–] advection over rise velocity ratio
g [m] Kolmogorov length scale
m [m2/s] kinematic viscosity
qc [kg/m3] continuous phase density
qd [kg/m3] dispersed phase density
r [N/m] surface tension
1 [–] bubble spacing
sb [s] bubble response time
sw [N/m2] wall shear stress
X [–] flow domain
x [1/s] fluid vorticity
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system scale L and the Kolmogorov scale g, where the
smallest scale eddies are dissipated into heat. However,
the physics of microbubbles involves motion that lies sig-
nificantly below the smallest turbulence length scales. This
allows us to use simple models to take into account the
presence of bubbles.

In terms of modelling the physics of two-phase flows,
one can distinguish between cases where the momentum
transfer from the bubbles to the carrier fluid is neglected
(one-way coupling) or taken into account (two-way cou-
pling). For very dilute flows, a one-way coupling approach
is suitable. In this case, only the momentum transfer from
the carrier flow to the bubbles is regarded. Back-coupling
effects should be taken into account when sufficiently high
concentrations of bubbles are present. In turbulent flows, it
is known that the presence of bubbles can significantly
influence the turbulent flow structures. For very dense
flows, one has to additionally take into account collisions
between bubbles. The modelling of those effects is referred
to as four-way coupling. In the present work, we restrict
ourselves to two-way coupled flows due to the low volume
fraction of the gas phase present in our simulations.
Fig. 1. Channel flow test case geometry with a gas-producing electrode
located at the bottom wall.
Recent work in the frame of dispersed two-phase flow
by Crowe et al. (1996) focused on collective effects of par-
ticles, droplets and bubbles, such as dispersion and evolu-
tion of local concentrations. One-way coupled bubble
dispersion has been analysed numerically in publications
by Wang and Maxey (1993), Maxey et al. (1994) and Giusti
et al. (2005). In the latter publication, the influence of the
lift force was investigated for a turbulent vertical channel
flow at Res = 150. Two-way coupling effects have been
investigated for particulate flow in a variety of numerical
test cases. Solid particles in isotropic turbulence were stud-
ied by Elghobashi and Truesdell (1993) and Boivin et al.
(1998), while particle-laden channel flow at shear Reynolds
numbers of Res = 85.5 and Res = 150 was investigated by
Pan and Banerjee (1996) and Soldati (2005). Concerning
bubbly flow, the effect of two-way coupling has been stud-
ied using the two fluid formulation by Druzhinin and
Elghobashi (1998, 2001), while an Eulerian–Lagrangian
formulation was applied by Lain et al. (2002) and Mazzi-
telli et al. (2003a,b).

In the present contribution, we set aside the electro-
chemical part of the problem described above and model
a parallel plate reactor as a turbulent channel flow of a
liquid electrolyte with gas bubbles evolving from a bottom
wall electrode. A simple sketch of the test case geometry is
shown in Fig. 1. The channel is bounded by no-slip walls
on its top and bottom, where the half-height of the channel
is denoted by h. The electrode from which the gas bubbles
evolve is located at the bottom of the channel and covers
the entire width in the transverse direction. The periodic
length of the channel in the streamwise direction is 2ph

and the periodic width in the spanwise direction is ph.
We select an Eulerian–Lagrangian model to simulate the

two-phase flow in the channel. Fully three-dimensional
simulations of turbulent bubbly flow in a simplified model
of a parallel plate electrochemical reactor are achieved by
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coupling a numerical solver for Lagrangian tracking of a
set of bubbles to a Navier–Stokes solver which is suitable
to perform DNS. This procedure is described in detail in
Section 2. Both codes used in the scope of the present work
are designed to work on distributed memory parallel com-
puter architectures.

2. Mathematical description

The modelling of bubble-laden flow is achieved by using
an Eulerian–Lagrangian formulation, which describes the
continuous phase by the incompressible Navier–Stokes
equations, while the trajectories of the gas bubbles are
tracked sequentially, each one represented by an equation
of motion following Newton’s second law. The phases
are coupled in terms of a two-way coupling approach,
where Newton’s principle of reciprocal actions is realized
by appropriate momentum source terms in the equations
of both phases. Bubble sizes are below the smallest length
scales of the turbulent carrier flow and also below the size
of the smallest grid cells. For this reason, a mass-point
approximation of the bubbles can be made.

2.1. Turbulent channel flow

The primary flow inside the parallel plate reactor is
modelled as a turbulent channel flow between two no-slip
walls, as discussed in Section 1. The fluid velocity field u

is obtained by DNS of the incompressible Navier–Stokes
equations:

r � u ¼ 0; ð1Þ
ou

ot
þ ðu � rÞuþ 1

qc

rp � mr2u ¼ 1

qc

f: ð2Þ

Here, qc is the density of the continuous fluid phase, m is the
kinematic viscosity of the fluid, p is the pressure and the
vector f contains the forces acting on the flow. It can be
decomposed into a large scale forcing term ff and a force
fd due to momentum transfer from the dispersed phase.
A description of the latter term will be given in Section
2.3. No-slip boundary conditions are applied at the channel
top and bottom walls, while periodic boundary conditions
are used in the streamwise and spanwise directions. We use
the shear velocity us and the length scale y+ = yus/m as
characteristic scales to describe the turbulent flow of the
continuous phase. The shear velocity is defined by

us ¼
ffiffiffiffiffi
sw

qc

r
; ð3Þ

where sw is the average wall shear stress. The shear Rey-
nolds number is defined as

Res ¼
h � us

m
ð4Þ

and was forced to equal Res = 131 in the present calcula-
tions. The numerical framework used for the channel flow
simulations is a spectral/finite element code, described by
Snyder and Degrez (2003). The Navier–Stokes equations
are discretized in x–y-planes using P1 linear finite elements,
while the transverse z-direction of the flow field is repre-
sented by means of a truncated Fourier series, assuming
periodicity in this direction. In this procedure, Eqs. (1)
and (2) are discretized in time in a second order accurate
manner. The Crank–Nicholson scheme is used to integrate
the pressure and viscous terms in time, while the Adams–
Bashforth method is used for the convective terms:

Rnþ1
C ¼ r � ðunþ1Þ ¼ 0; ð5Þ

Rnþ1
M ¼ 1

Dt
ðunþ1 � unÞ þ 3

2
ððu � rÞuÞn � 1

2
ððu � rÞuÞn�1

þ 1

qc

rpnþ1
2 � mr2ðunþ1 þ unÞ � 1

qc

fn ¼ 0: ð6Þ

Concerning the finite element discretization of the continu-
ity equation, the well-known pressure-stabilized Petrov–
Galerkin (PSPG) dissipation is used to avoid spurious
pressure oscillations that are encountered when using equal
order elements for pressure and velocity. To eliminate con-
vective instabilities, a fourth order Laplacian dissipation
term similar to the one used by Jameson et al. (1981) is
used to stabilize the momentum equation. In this way,
the spatial discretization is of second order. To eliminate
the remaining z-derivatives occurring after the finite ele-
ment discretization, a truncated Fourier series is used.
The 3D problem in physical space is transformed into a ser-
ies of loosely coupled 2D problems in Fourier space by
means of an FFT. For reasons of computational efficiency,
the convective terms are computed in physical space
and then transformed to Fourier space, which makes it a
pseudo-spectral approach. The 2D linear problems are
solved sequentially on a distributed memory parallel com-
puter (Vanden Abeele et al., 2004). Inter-process communi-
cation is realized through standard MPI operations.
2.2. Lagrangian tracking of bubbles

The motion of a bubble in a turbulent carrier fluid is
determined by the body and surface forces acting on it.
We can define the bubble Weber and Reynolds numbers as

We ¼ qcðu� vÞ2 � d
r

; ð7Þ

Reb ¼
ju� vj � d

m
; ð8Þ

where d is the diameter of the bubble, v is its velocity, u is
the fluid velocity at the bubble center and r denotes the
surface tension of the bubble.

We consider all bubbles in our simulations as small,
non-deformable and rigid spheres. This hypothesis holds
for bubbles of very low Weber numbers (We < 1). It is valid
for air bubbles with diameter smaller than 10�3 m moving
in water, as explained by Giusti et al. (2005).

According to Ferrante and Elghobashi (2004), a no-slip
condition can be applied at the bubble interface if the water
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contains surfactants. For the present work, we consider
that bubbles formed in electrochemical processes are con-
taminated by pollutants and have therefore applied no-slip
drag. Furthermore, internal gas circulation effects of the
bubbles are neglected.

At small bubble Reynolds numbers (Reb < 1), viscous
effects are dominant and the relative motion of the bubble
in the fluid is in the Stokes regime. In the present work, we
will restrict ourselves to bubble motion of low Reb, so that
turbulent wakes, which occur behind the bubbles at higher
bubble Reynolds number, can be neglected (de Vries et al.,
2002). We state Newton’s second law as a Lagrangian
equation of motion for each bubble

ov

ot
¼ 3

4

CD

d
qc

qd

ju� vjðu� vÞ þ 9

ffiffiffiffiffi
pm
p

d
qc

qd

Z t

t0

dðu� vÞ
dt

dsffiffiffiffiffiffiffiffiffiffi
t � s
p

þ 1

2

qc

qd

Du

Dt
� dv

dt

� �
þ qc

qd

Du

Dt
þ CL

qc

qd

ðu� vÞ � x

þ 1� qc

qd

� �
g: ð9Þ

This equation corresponds to the formulation denoted by
Maxey and Riley (1983). Here, qd is the density of the dis-
persed phase and CD and CL are the drag and lift coeffi-
cients, respectively. The first three terms on the right
hand side of the above equation are, in order of appear-
ance, the Stokes drag force, the Basset history force and
the virtual mass force. These forces are due to the unsteady
Stokes flow of the fluid relative to the particle. The other
forces are the force due to the fluid pressure gradient and
viscous stresses, the slip–shear lift force and the forces
due to gravity and buoyancy. In the lift force term,
x = $ · u denotes the vorticity of the fluid. The derivative
d/dt is following the moving bubbles with respect to time,
while D/Dt is the total acceleration of the fluid as seen by
the bubble, evaluated at the bubble position. The vector g

denotes the gravitational acceleration.
Following the empirical correlations for a fluid sphere,

the drag coefficient for a spherical bubble can be evaluated
as CD = 16/Reb for small bubble Reynolds numbers (Lain
et al., 2002). The bubble response time, which can be
derived from the general definition of the response time
of a spherical body in a flow

sb ¼
2

3lc

ð2qd þ qcÞd2

RebCD

ð10Þ

reduces to sb = d2/24m in case of bubbly flow at low bubble
Reynolds numbers, where the density of the gas is negligi-
bly small compared to the density of the carrier flow med-
ium. The lift coefficient equals CL = 0.5 throughout our
investigations. We neglect the influence of the Basset his-
tory force, which takes into account the time lag of the
velocity profile around the bubble occurring in case of vis-
cosity-driven acceleration, because we assume that velocity
differences damp out rapidly for bubbles of small Reynolds
numbers.
The Lagrangian equation of motion (9) is integrated in
time using the Crank–Nicholson scheme, which provides
second order accuracy in space and time. Together with
the relation v = dx/dt between the bubble velocity and its
position, a system of six ordinary differential equations in
three space dimensions is formed, which has to be solved
for each bubble. Sequential tracking of all bubbles in the
system is performed at each time step n of the Navier–
Stokes solver. All bubble velocities v and positions x are
updated and the source terms for the back-coupling to
the Navier–Stokes solver are computed. The Lagrangian
solver uses the mesh partitioning of the Navier–Stokes sol-
ver, to which it is coupled via standardized data interfaces.
This allows to distribute the tracking of the bubbles to par-
allel computer partitions according to the mesh partition-
ing. The parallel architecture of the Lagrangian solver is
realized through standard MPI communication.
2.3. Phase coupling

Two-way coupling between the continuous and the dis-
persed phase is taken into account through a procedure
described by Boivin et al. (1998), where a contribution of
the force fd,i of all bubbles inside a control volume Vi

around a grid node i is added to the fluid momentum Eq.
(2) in this node

fd;i ¼
PNi

j¼1V b;j � fb;j

V i
: ð11Þ

Here, Ni is the number of bubbles in the volume unit and
Vb,j is the volume of a single bubble, which is modelled
as a point source inside the continuous carrier flow field.
Note that the forces f and fb are per unit volume in order
to agree with the formulation stated in Eq. (2). In two-
way coupling, no interactions between bubbles are taken
into account. In this way, the bubble trajectories are inde-
pendent and in no way coupled to each other. This way of
modelling turbulent dispersed two-phase flows gives statis-
tically reliable results for sufficiently low volume fractions
of the dispersed phase.

We investigated the effect of momentum back-coupling
of the gas bubbles on the flow for the present configura-
tion, where the volume fraction of the gas phase was far
below ad = 10�3. This study indicated that the back-cou-
pling terms do not have a major influence on the flow
patterns of the primary phase in the present case, since
in all flow configurations tested throughout this study,
the differences of the results between one-way (fd = 0)
and two-way coupled flows were marginal. This leads to
the conclusion that in flows at low bubble Reynolds num-
bers and low volume fractions, the advective transport
from the primary to the secondary phase is highly domi-
nant. If we regard the ratio of momentum between the
dispersed phase and the continuous carrier phase inside
a control volume V and assume the velocity difference



Fig. 2. Kolmogorov length scale g and grid cell size Dy as functions of the
channel height in wall units.
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u � v (i.e. the bubble Reynolds number) to be small, we
end up with

mdu

mcv
¼ qd � n � V b

qcðV � n � V bÞ
¼ ad

1� ad

qd

qc

: ð12Þ

This value tends to zero for dilute bubbly flow, where the
volume fraction of the dispersed phase ad and the density
ratio qd/qc are small compared to unity. This indicates neg-
ligible back-transfer of momentum from the dispersed enti-
ties to the flow, as it was observed in the present study.
However, for a higher gas concentration with volume frac-
tions above ad = 10�3, Xu and Maxey (2002) as well as
Ferrante and Elghobashi (2004) report a significant back-
coupling effect of microbubbles on the flow, resulting in
drag reduction in the wall-region.

Since, we assume the volume fraction of the gaseous
phase to be far below the value of ad = 10�3, the carrier
phase density can be considered as unaffected by the pres-
ence of the bubbles (Lain et al., 2002). In this way, we can
neglect mass coupling between the phases. Therefore, there
is no density variation and no mass source term appearing
in the fluid continuity Eq. (1) and the flow variables in the
Navier–Stokes equations are not averaged by the volume
fraction as has been done e.g. in the work of Ferrante
and Elghobashi (2004, 2007), who investigated higher val-
ues for the volume fraction in an evolving turbulent bound-
ary layer.

3. Numerical results

The behaviour of microbubbles injected from an
electrode located at the bottom of a channel into a fully
developed turbulent flow (see Fig. 1) was investigated
numerically. We performed simulations of a fully turbulent
flow with shear Reynolds numbers of Res = 131. The chan-
nel height was chosen to be of unity (h = 1 m). The carrier
fluid was considered as water with a density of qc = 103 kg/
m3 and a kinematic viscosity of m = 1.025 · 10�6 m2/s.
Calculations were performed on a grid consisting of 80 ·
64 · 64 points in the spanwise, wall-normal and streamwise
direction, respectively. The grid is refined at the channel
walls in the y-direction to provide a good resolution in
the boundary layer, where the two last grid cells are at
0.16y+ and 0.66y+, respectively. There are seven points
within y+ > 8, which provides a sufficient resolution of
the viscous sub-layer. Fig. 2 shows the relation of the grid
cell size against channel height. In the spanwise and the
flow direction, the cells are of equal spacing.

First of all, we regard the pure single-phase flow without
bubbles and compare it to well-validated references to
make sure that our primary phase flow field is well
resolved. We compare our results for Res = 131 with the
well-validated reference DNS results of Kim et al. (1987)
for Res = 180 and Giusti et al. (2005) for Res = 150.
Fig. 3 shows the flow statistics in terms of the mean stream-
wise velocity and the root mean square of the velocity com-
ponents. It can be seen that the present results are slightly
under-resolved. For a more complete validation of the
DNS solver used, the reader is referred to Vanden Abeele
et al. (2004).

The bubbles that detach from the electrode are advected
in the streamwise direction, while they experience a rise due
to buoyancy (see Fig. 4). The bubbles were considered as
air with a density of qd = 1.2 kg/m3. Irregular bubble dis-
persion and clustering effects due to turbulent fluctuations
of the carrier flow are clearly visible. These phenomena will
be discussed in the following paragraph. First, we intro-
duce a dimensionless parameter c, which represents the
ratio between the bulk velocity ubulk of the primary phase
flow and the rise velocity ur of a bubble:

c ¼ ubulk

ur

: ð13Þ

The rise velocity is defined as a function of the gravita-
tional constant g, the kinematic viscosity m of the electro-
lyte flow and the bubble diameter d by the following
relation:

ur ¼
g � d2

12m
: ð14Þ

In our simulations, we choose the values of d and g in a
way that the bubble Reynolds number according to Eq.
(8) is kept at a constant value of Reb = 0.1 and the factor
c becomes a similarity parameter, giving reasonable values
in comparison with the geometry of an existing experimen-
tal reactor. This reference device is operating at an advec-
tion parameter of cref = 12.
3.1. Bubble dispersion in a channel

We analysed dispersive effects in a two-way momentum
coupled flow. The periodic boundary on the downstream
side of the channel served as outlet for the gaseous phase,
i.e. the bubbles were not transferred back to the corre-
sponding upstream inlet together with the carrier flow.
The flow itself, however, was subjected to a periodic



Fig. 3. Comparison between the Eulerian carrier flow statistics (mean streamwise velocity and root mean square velocity fluctuations normalized by the
wall shear velocity us) of the present simulation and reference data from Giusti et al. (2005) as well as from Kim et al. (1987).

Fig. 4. Macroscopic bubble distribution in the channel and iso-surfaces of
skin friction on the bottom wall.
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boundary condition in this direction. Three computational
runs (denoted as A, B and C) were performed, where the
bubble diameter varied between 200 lm and 600 lm. From
Fig. 2, we see that these bubble sizes are well below both
the Kolmogorov length scale at the wall and the smallest
grid element in the boundary layer. All relevant parameters
Table 1
Bubble diameters d normalized by the Kolmogorov length scale at the wall and
at the channel outlet, gravity scales, advection parameters and Weber number

Case d d/gWall d=yþ1 sb

A 2 · 10�4 0.035 0.026 1.63
B 4 · 10�4 0.070 0.053 6.51
C 6 · 10�4 0.105 0.079 14.6 ·
for the three test cases are shown in Table 1. The bubble
Reynolds number was kept at a constant value of
Reb = 0.1 in all computations. The bubbles were placed
at random positions on the electrode, their center being a
radius away from the wall. The production rate of the bub-
bles was 50 s�1. After detaching from the electrode surface,
the bubbles are advected in streamwise direction by the
electrolyte due to the drag force. At the same time, they
experience a rise due to buoyancy (see Fig. 4). This macro-
scopic motion was found to depend on the parameter c.
For an increasing value of c, the effect of advection
becomes more and more dominant. An a-posteriori calcu-
lation of the Weber number verified the assumption of rigid
spherical bubbles.

We first analysed the relation between the spanwise
average bubble y-position (i.e. the average height h to
which the bubble has risen) and the z-position in the
streamwise direction. The spanwise averaging over the
width of the channel was performed according to
the smallest cell size, bubble response times sb, peak volume fractions a�avg

s for comparison between test cases A, B and C

a�avg g c We

· 10�3 8 · 10�8 0.158 3.9 0.055
· 10�3 6 · 10�7 0.019 7.8 0.110
10�3 2 · 10�6 0.006 11.7 0.165



Fig. 5. Average bubble y-position as a function of the channel length z,
averaged over the channel width x.
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yavg ¼
1

2p

Z 2p

0

hyidx: ð15Þ

From Fig. 5, we can see that there is an almost linear
behaviour between the advection and rise velocities of a
bubble. For an increasing value of c, the influence of the
advection is stronger and the angle b = arctan(y/z), under
which the bubble rises in the streamwise direction, gets
smaller.

We further computed the average gas volume fraction at
the outlet of the channel (z = 2p) for all three computa-
tional runs. The average of the volume fraction was taken
over time and the width of the channel by

aavg ¼
1

2pT

Z T

0

Z 2p

0

hadidxdt; ð16Þ

where T is the time interval of averaging. Fig. 6 shows vol-
ume fraction distributions at the channel outlet. We see
that the peak volume fractions obtained are a�avg ¼ 8�
10�8; a�avg ¼ 6� 10�6 and a�avg ¼ 2� 10�6 for the test cases
A, B and C, respectively. This indicates that the initial
assumption of a dilute flow was valid, because the peak val-
Fig. 6. Average volume fraction aavg as a function of the channel height y,
averaged over time and the channel width x.
ues are far below the threshold of ad = 10�3. If we define
the bubble spacing as

1 ¼ L
d
¼ p

6ad

� �1=3

; ð17Þ

where L is the average distance between two bubbles, we
reach a value of 1 = 64.9 for test case C, a fact that further
stresses this assumption. The volume fraction in the region
above the electrode, on which the bubbles are generated,
reaches a peak value of ad = 1.5 · 10�5 in case C, which
corresponds to 1 = 32.7. This value is also indicating a
dilute bubbly flow. For volume fractions higher than
ad = 10�3, four-way coupling effects have to be taken into
account.

From the theory of bubble interaction with turbulent
flow structures it is known that bubbles tend to concentrate
in regions of high vorticity (Mazzitelli et al., 2003a,b). In
the present study of wall-bounded turbulent channel flow,
bubbles detaching from the lower wall into the flow are
found to concentrate in streamwise vortex filaments, which
are created in the turbulent boundary layer. Fig. 7 shows
an instantaneous horizontal crosscut of the channel at
y+ = 32, indicating iso-surfaces of the z-component of the
vorticity and the positions of bubbles inside a section of
y+ between 29.5 and 34.5 for case C. The streamwise vortex
filaments are indicated by high relative values of the z-vor-
ticity xz. The alignment of the bubbles with the coherent
structures is clearly visible. It was observed that the bub-
bles tend to cluster along the coherent structures. This
effect was regarded to be most distinct in case C, where
the bubble diameter, the response time and the value for
c were larger than in cases A and B. This can be related
to the fact that for a higher value of c, the effect of the grav-
itational rise of a bubble becomes weaker compared to the
advection and it takes more time for the bubbles to verti-
cally pass the boundary layer vortices. Thus, the bubbles
have more time to align with the coherent structures than
they have for low values of c.

Figs. 8 and 9 show instantaneous vertical crosscuts of
the channel at z = 3.4 and indicate only the lower half-
height (0 < h < 0.5) of the channel. In Fig. 8, the instanta-
Fig. 7. Instantaneous bubble distribution and contours of xz in the
y+ = 32 plane for test case C.



Fig. 8. Instantaneous tangent velocity vectors and contours of xz in the
z = 3.4 plane for test case C.

Fig. 9. Instantaneous bubble distribution and contours of xz in the
z = 3.4 plane for test case C.
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neous tangent velocity vectors of the primary phase flow
field in the plane are shown, while Fig. 9 indicates the dis-
tribution of gas bubbles in a section of z between 3.35 and
3.45.

We can see from Fig. 9, that the bubbles are not exactly
located inside the coherent vortical structures, although
their motion in the spanwise and wall-normal directions
seems to be highly influenced by these vortices. The bub-
bles are dragged towards the low-pressure regions inside
the vortices by centripetal forces. This effect is due to the
low density ratio between the bubbles and the electrolyte.
However, this motion is superimposed by the buoyancy
force. The bubbles rise vertically through the coherent
vortical structures and are not fully captured inside them.

Fig. 10 shows a horizontal crosscut of the channel at
y+ = 32 together with iso-surfaces of the streamwise veloc-
ity component and the bubble distribution in a section of
Fig. 10. Instantaneous bubble distribution and contours of the z-velocity
in the y+ = 32 plane for test case B.
y+ between 29.5 and 34.5 for case B. The characteristic
streamwise low-speed and high-speed streak regions of
the turbulent boundary layer can be identified and the bub-
bles are found to align with them. The bubbles in the low-
speed regions are advected less than those located in the
high-speed regions. This effect can of course be related to
the drag force, which acts very rapidly in case of low bub-
ble Reynolds numbers. For a higher value of c, this effect is
even more distinct.

3.2. Effect of the lift force

According to the definition stated in Eq. (9), the slip–
shear lift force depends on the instantaneous velocity differ-
ence u � v and the fluid vorticity x. This indicates that the
effect of the lift force does not play a significant role in
regions of low vorticity, but should rather be analysed
for high-x regions in the flow.

Studies for vertical pipe flow configurations by Serizawa
et al. (1975), Beyerlein et al. (1985) and Kashinsky and
Randin (1999) led to the conclusion that bubbles migrate
towards the channel walls in case of an upward flow, while
they tend to cluster in the core of the pipe. Felton and Loth
(2001) performed an experimental study of the dispersion
of single bubbles in a vertical turbulent boundary layer
and observed that the migration effect towards the wall is
stronger for larger bubbles. Giusti et al. (2005) investigated
the effect of the lift force on microbubbles in the wall-
region of a turbulent upward and downward moving chan-
nel flow of Res = 150 and report that for this configuration,
the lift force has a large effect on the behaviour of the bub-
ble motion in the wall-region (i.e. below y+ = 10) when the
bubbles stay a long time in the boundary layer. For an
upward flow, bubbles are pushed to the wall by the lift
force, while for a downward flow, the lift force prevents
the bubbles from entering the viscous sub-layer. Further-
more, is known that in the case of lift force acting on bub-
bles inside vortical structures, the bubbles tend to move to
the downwash side of the vortex, as mentioned by Wang
and Maxey (1993), Maxey et al. (1994) and Mazzitelli
et al. (2003a,b), who analysed the dispersive behaviour of
microbubbles in homogenous isotropic turbulence.

In the present work, we investigate the influence of the
lift force on the behaviour of the bubble motion for a hor-
izontal turbulent channel flow, where the bubbles do not
stay in the wall-region for a long time due to gravitational
rise. For this reason, the effect of the lift force can only be
investigated in the region away from the wall in our simu-
lations. The computations of test case C were repeated with
the lift force switched off. Fig. 11 shows a streamwise vor-
tex in a crosscut of the instantaneous flow field at z = 4.0
with bubble distribution in the section between z = 3.95
and z = 4.05. The black circles indicate bubble positions
with included lift force (CL = 0.5), while the white circles
correspond to bubble positions without lift force
(CL = 0). The section of the crosscut containing the stream-
wise vortex tube is located between y+ = 26 and y+ = 72,



Fig. 11. Instantaneous bubble distribution and contours of xz in the
z = 4.0 plane for test case C.
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which is closer to the middle line of the channel than to the
lower channel wall.

A close inspection of Fig. 11 reveals that the bubbles
slightly move to the downwash side of the vortex when
passing it under the influence of gravitational rise. This
qualitatively confirms earlier observations of Mazzitelli
et al. (2003b). The effect is less pronounced than in the ref-
erence article. This is mainly due to reduced gravity in our
simulations (see Table 1). The average angle between the
trajectories of the bubbles in the cross-cut through the vor-
tex tube and the z-axis was 5.35�. With the lift force set to
zero, it was reduced to 5.52�. The inclination angle of the
bubble trajectory and thus the average bubble rise velocity
are reduced by the presence of the lift force.
4. Conclusions

DNS simulations of bubble-laden turbulent channel
flow were performed using a spectral/finite element based
Navier–Stokes solver coupled with a Lagrangian tracking
solver. Microbubbles of diameters below the Kolmogorov
length scale were injected to the flow from a bottom wall
electrode. All computations were performed on a distrib-
uted memory parallel computer. Two-way momentum
coupling was used to simulate the interaction of the gas
bubbles and the turbulent carrier flow.

It was found that the motion of the bubbles is strongly
influenced by the coherent vortical structures of a turbulent
boundary layer, i.e. the quasi-streamwise vortex filaments
which are occurring in turbulent boundary layers. The bub-
bles are pulled towards the vortex centers by centripetal
forces when passing these structures. However, due to
buoyancy, they overcome this influence and do not stay
inside the vortices.

From Figs. 7, 9 and 10, we conclude that the motion of
gas bubbles lifting off from a wall electrode into a turbulent
boundary layer of a channel flow involves complex kine-
matic phenomena, since gravitational rise, advective trans-
port, motion due to pressure differences and the unsteady
behaviour of the coherent structures are superimposed.
These effects are still not fully understood and should be
subject to further investigations. According to our results,
the drag force and the buoyancy can be considered to be
driving phenomena for dispersive effects of bubbly flow
in an advection-dominated channel, where the parameter
c determines their relative importance. The effect of the lift
force was found to be small. Furthermore, also the effect of
momentum back-coupling from the bubbles to the flow
was found to be negligible for dilute bubbly flow.
Acknowledgements

We acknowledge the support from the Instituut voor de
Aanmoediging van Innovatie Soor Wetenschap and Tech-
nologie in Vlaanderen (IWT) for the MuTEch project
(Contract no. SBO 040092).
References

Beyerlein, S.W., Crossmann, R.K., Richter, H.J., 1985. Prediction of
bubble concentration profiles in vertical turbulent two-phase flow. Int.
J. Multiphas. Flow 11, 629–641.

Boivin, M., Simonin, O., Squires, K.D., 1998. Direct numerical simulation
of turbulence modulation by particles in isotropic turbulence. J. Fluid
Mech. 375, 235–263.

Crowe, C.T., Troutt, T., Chung, J.N., 1996. Numerical models for two-
phase turbulent flows. Ann. Rev. Fluid Mech. 28, 11–43.

de Vries, A.W.G., Biesheuvel, A., van Wijngaarden, L., 2002. Notes on the
path and wake of a gas bubble rising in pure water. Int. J. Multiphas.
Flow 28, 1823–1835.

Druzhinin, O.A., Elghobashi, S., 1998. Direct numerical simulations of
bubble-laden turbulent flows using the two-fluid formulation. Phys.
Fluids 10, 685–697.

Druzhinin, O.A., Elghobashi, S., 2001. Direct numerical simulation of a
three-dimensional spatially developing bubble-laden mixing layer with
two-way coupling. J. Fluid Mech. 429, 23–61.

Elghobashi, S., Truesdell, G.C., 1993. On the two-way interaction between
homogenous turbulence and dispersed solid particles. Phys. Fluids A 5,
1790–1801.

Felton, K., Loth, E., 2001. Spherical bubble motion in a turbulent
boundary layer. Phys. Fluids 13, 2564–2577.

Ferrante, A., Elghobashi, S., 2004. On the physical mechanisms of drag
reduction in a spatially developing turbulent boundary layer laden
with microbubbles. J. Fluid Mech. 503, 345–355.

Ferrante, A., Elghobashi, S., 2007. On the effects of microbubbles on
Taylor–Green vortex flow. J. Fluid Mech. 572, 145–177.

Giusti, A., Lucci, F., Soldati, A., 2005. Influence of the lift force in direct
numerical simulation of upward/downward turbulent channel flow
laden with surfactant contaminated microbubbles. Chem. Eng. Sci.
60, 6176–6187.

Jameson, A., Schmidt, W., Turkel, E., 1981. Numerical solutions of the
Euler equations by finite volume methods using Runge–Kutta time
stepping schemes. In AIAA 14th Fluid and Plasma Dynamic Confer-
ence, Palo Alto.

Kashinsky, O.N., Randin, V.V., 1999. Downward liquid gas–bubbly flow
in a vertical pipe. Int. J. Multiphas. Flow 25, 109–138.

Kim, J., Moin, P., Moser, R., 1987. Turbulence statistics in fully
developed channel flow at low Reynolds number. J. Fluid Mech.
177, 133–166.



T. Nierhaus et al. / Int. J. Heat and Fluid Flow 28 (2007) 542–551 551
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